<!DOCTYPE html><html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    A new article is available in IPOL:
    <a class="moz-txt-link-freetext" href="https://www.ipol.im/pub/art/2024/528/">https://www.ipol.im/pub/art/2024/528/</a><br>
    <br>
    Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, and Gabriele
    Facciolo, <br>
    A Review of t-SNE, <br>
    Image Processing On Line, 14 (2024), pp. 250–270. <br>
    <a class="moz-txt-link-freetext" href="https://doi.org/10.5201/ipol.2024.528">https://doi.org/10.5201/ipol.2024.528</a><br>
    <br>
    Abstract<br>
    <p style="text-align: justify; color: rgb(0, 0, 0); font-family: Arial, Helvetica, Tahoma, sans-serif; font-size: 14.4px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">High
      dimensional data is difficult to visualize. T-Distributed
      Stochastic Neighbor Embedding (t-SNE) is a popular technique for
      dimensionality reduction enabling a planar visualization of a
      dataset preserving as much as possible its metric. This paper
      explores the theoretical background of t-SNE and its accelerated
      version. A comparison of the performance of t-SNE on various
      datasets with different dimensions is also performed.</p>
    <br class="Apple-interchange-newline">
    <br>
    <br>
    <br>
  </body>
</html>