
IPOL Software Guidelines — version 1.00

2011-12-20

IPOL reviews, uses, publishes and distributes some software provided by the authors. With
the requirements and recommendations expressed in these guidelines, we intend to facilitate
the production and review of verifiable and usable software for reproducible research.

Contents

1 In Brief: Check List, Check Service and Examples 2

2 About this Document 3

2.1 Status . 3

2.2 Revisions . 4

2.3 Vocabulary . 4

3 Guidelines 4

3.1 1. Packaging and Content . 4

3.1.1 1.1. Compressed Archive . 4

3.1.2 1.2. Archive Name, Program Name and Version 5

3.1.3 1.3. File and Folder Names . 5

3.1.4 1.4. Hidden and Useless Files . 5

3.2 2. Implementation . 6

3.2.1 2.1. Source Code . 6

3.2.2 2.2. Programming Language . 6

3.2.3 2.3. Portability . 6

3.2.4 2.4. Dependencies . 7

1

3.2.5 2.5. Compilation . 8

3.2.6 2.6. Usage and Input/Output . 8

3.2.7 2.7. Computing Resources . 8

3.3 3. Copyright, License and Patents . 9

3.3.1 3.1. Copyright Attribution . 9

3.3.2 3.2. Patent Warning . 9

3.3.3 3.3. License . 10

3.4 4. Documentation . 11

3.4.1 4.1. README.txt . 11

3.4.2 4.2. Readability . 12

3.4.3 4.3. Implementation and Comments 13

3.4.4 4.4. Example Data . 13

4 Annexes 13

4.1 A. Key Words . 13

4.2 B. Compression and Archive Tools . 14

4.3 C. Coding Help . 15

4.4 D. Source Code Tools . 15

1 In Brief: Check List, Check Service and Examples

The list hereafter is a summary of the guidelines, to quickly check an IPOL program.
Some are requirements, others are only recommendations. The guidelines are detailed and
explained later in this document.

• zip or tar/gzip archive name version.{zip,tar.gz,tgz}, less than 2 MB

• everything into a name version/ folder

• file names with a-z,A-Z,0-9,-, ,.

• no hidden file, backup or useless file, no binary

• C89, C99 or C++98 code tested with gcc -std=xxx -Wall -Wextra -Werror

• portable code, 32/64-bits, nothing specific to an operating system

2

• only libtiff, libjpeg, libpng, zlib, fftw, cblas and clapack external libraries

• compilation with make or cmake, only standard options, make uses $(CC) or $(CXX)

• command-line non-interactive interface

• max 1 GB memory, max 30 s computation in the demo environment

• can read/write in PNG, TIFF, PNM, EPS, SVG, VRML or PLY format

• copyright attribution and GPL/BSD license info in every source file

• patent warning if needed

• README.txt essential information

• correct, clean code in English

• max 80 characters per line, max 1000 lines per file

• main(), algorithmic and auxiliary code in different files

• detailed comments for every function and every implementation step

• example input data and result

A service to check an IPOL program against some of these guidelines is available with ex-
amples of programs following the guidelines at http://tools.ipol.im/pkg/. This service
can be used by IPOL authors to verify their code before submission, and by reviewers as
a preliminary validation of the software1.

2 About this Document

2.1 Status

This document is the official IPOL software guidelines, version 1.00, published on December
20th, 2011. It is immediately applicable and obsoletes previous versions. The reference
version is available on line at http://tools.ipol.im/wiki/ref/software_guidelines/.

1The absence of error reported by this service doesn’t imply that all the guidelines are correctly followed.
Some guidelines need a human review.

3

http://tools.ipol.im/pkg/
http://tools.ipol.im/wiki/ref/software_guidelines/

2.2 Revisions

When needed, future versions of this document will be published and will replace the
current version. The current version will be kept and a summary of the differences will be
provided. This revision will be announced on the IPOL website2 and the IPOL discussion
list3.

2.3 Vocabulary

In this document, the term “IPOL program” is used to designate the reference program
implementation of an algorithm submitted for publication in an IPOL article. An IPOL
article may publish more than one program, an IPOL demo may use more than one
program.

In this document, the words must, must not, should, should not, recommended, and
may are used to express required, recommended, and optional items. Their interpretation
is described in IETF RFC21194 and detailed in the context of these guidelines in Annex
A.

3 Guidelines

3.1 1. Packaging and Content

3.1.1 1.1. Compressed Archive

An IPOL program must be packaged as a compressed archive file. This file archive can
either be a single volume .ZIP compressed archive or a GZIP compressed tar archive5. The
size of the compressed archive file should be less than 2 MB. In the remainder of this
document, we will use the terms “zip archive” and “tar/gzip archive” for convenience.

Annex B of this document provides some examples of programs that can be used to produce
such compressed archives.

2http://www.ipol.im/
3http://tools.ipol.im/mailman/listinfo/discuss
4http://tools.ietf.org/html/rfc2119
5These file formats are defined by the PKZIP APPNOTE specification6, version 6.3.2, for the .ZIP

compressed archive format, the IETF RFC19527 for the GZIP compressed format, and the POSIX.1 ustar
definition8 for the tar archive format.

4

http://www.ipol.im/
http://tools.ipol.im/mailman/listinfo/discuss
http://tools.ipol.im/mailman/listinfo/discuss
http://tools.ietf.org/html/rfc2119
http://www.ipol.im/
http://tools.ipol.im/mailman/listinfo/discuss
http://tools.ietf.org/html/rfc2119
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://tools.ietf.org/html/rfc1952
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06

3.1.2 1.2. Archive Name, Program Name and Version

The compressed archive file of an IPOL program must be named according to the name version.extension

pattern, where:

• name and version must consist only of lower case letters (a-z), digits (0-9), minus
(-) and period (.) signs;

• name must be at least two characters long and start with a letter; it must indicate
the name of the program; this name can be the name of the executable program file,
or another name, at the author’s will;

• version must start with a digit; it must indicate a version number for the program,
in the sense that two different releases of the program must have two different
version numbers; if no version numbering scheme is established for the program,
the YYYYMMDD pattern based on the year, month and day of the release date may be
used;

• extension must be zip for zip archives and tar.gz or tgz for tar/gzip archives.

3.1.3 1.3. File and Folder Names

All the files and folders extracted from the compressed archive must be located inside a
base folder named name version, where name and version are identical to those used for
the compressed archive file name. Absolute path must not be used for files and folders
extracted from the archive.

The name of all files and folders composing the IPOL program must consist only of lower
or upper case letters (a-z, A-Z), digits (0-9), minus (-), underscore () and period (.)
signs. They should start with a letter.

The names should provide a meaningful hint of the content of these files and folders.

3.1.4 1.4. Hidden and Useless Files

An IPOL program should not include hidden files or folders or by-products of the tools
used by the authors, such as (but not limited to):

• files inserted by file managers (.DS Store, .directory);

• folders inserted by version control managers (.svn, .git);

• backup versions (filename~, filename.bak).

The program should not be distributed with files not useful to build, use or study the
implementation of the algorithm published in IPOL.

5

3.2 2. Implementation

3.2.1 2.1. Source Code

An IPOL program must include all the material necessary to build one or more executable
program files implementing the algorithm published in IPOL. This material must be pro-
vided in human-readable source code form. An IPOL program must not be distributed
with binary precompiled files if these files can be obtained from source code9.

Annex C provides some information for IPOL authors to help them perform various fre-
quent implementation tasks.

3.2.2 2.2. Programming Language

The source code of an IPOL program must follow the published standard syntax of one
or more compiled programming languages. IPOL can currently only process C89 (ANSI
C), C99, and C++98 (ISO C++)10. If the authors want to publish their program with
another well-known and standardized compiled language (such as Fortran 90), they should
contact the editorial board to investigate the possibilities.

IPOL authors should test their C and C++ source code with the gcc compiler in strict
compilation mode14 before submitting it to IPOL.

The source code may use the OpenMP 3.015 API for shared multiprocessing programming
(parallel programming) but it must also compile and provide the same results (albeit
slower) without OpenMP. Usage of OpenMP must not be tied to a specific number of
processors and must only rely on the OpenMP standard, not on any vendor implementa-
tion.

3.2.3 2.3. Portability

The source code of an IPOL program must not require any extension of the language or
its standard library, or any resource specific to a hardware environment, operating system
or compiler. These extensions and resources may be used to achieve better performances
if they are available but their availability must be detected during the compilation or
execution and an alternative portable implementation must be used in their absence.
This includes (but is not limited to)

9If the authors want to distribute binary versions, they can do it in IPOL but not via the compressed
archive of the IPOL program.

10C89 is defined by the ANSI X3.159-1989 Programming Language C standard11, C99 is defined by
the ISO/IEC 9899:1999 Programming languages — C standard12, and C++98 is defined by the ISO/IEC
14882:1998 Programming languages — C++ standard13.

14C89, C99 and C++98 code can be tested with gcc -std=xxx -Wall -Wextra -Werror where xxx is
c89, c99 or c++98.

15http://www.openmp.org/mp-documents/spec30.pdf

6

http://www.openmp.org/mp-documents/spec30.pdf
http://flash-gordon.me.uk/ansi.c.txt
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.kuzbass.ru:8086/docs/isocpp/
http://www.kuzbass.ru:8086/docs/isocpp/
http://www.openmp.org/mp-documents/spec30.pdf

• language dialects specific to a compiler (GNU C, Microsoft C);

• standard library functions specific to an implementation (drand48());

• assembler code or “intrinsic functions” mapped to a processor instruction (mulps,
builtin ia32 mulps());

• operating system calls (Win32 GetSystemTime(), POSIX gettimeofday());

• file system locations (C:\Documents and Settings, /tmp);

• code specific to a memory model environment (32-bits, 64-bits).

Special attention will be given to the Linux 64-bit environment because it is currently the
primary environment for IPOL demonstrations. But the program must also be usable
in other environments and this portability must not be limited to the Win32/POSIX
alternative.

3.2.4 2.4. Dependencies

An IPOL program must not use external software components except for the libraries and
APIs listed hereafter. The program may expect these software components to be correctly
installed and configured during the compilation and execution:

• libtiff16 version 3.x and libpng17 version 1.4.x to read and write files, with their
dependencies libjpeg18 version 8.x, zlib19 version 1.2.x;

• fftw20 version 3.x (single and double precision) for Fourier transforms;

• cblas21 and clapack22 for linear algebra.

Other libraries can be examined and may be added to this list on request, if they are
portable, widely used, with a stable API.

This restriction only applies to software components used by the IPOL program but not
distributed in source form with the program. Annex C has more details about how some
external code, including external library code, can be used in the IPOL program.

16http://www.remotesensing.org/libtiff/
17http://libpng.org/pub/png/libpng.html
18http://www.ijg.org/
19http://zlib.net/
20http://www.fftw.org/
21http://www.netlib.org/blas/
22http://www.netlib.org/lapack/

7

http://www.remotesensing.org/libtiff/
http://libpng.org/pub/png/libpng.html
http://www.ijg.org/
http://zlib.net/
http://www.fftw.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.remotesensing.org/libtiff/
http://libpng.org/pub/png/libpng.html
http://www.ijg.org/
http://zlib.net/
http://www.fftw.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/

3.2.5 2.5. Compilation

An IPOL program must be compiled by an automated non-interactive build procedure
with make or cmake. This build tool must not be configured to use any special compiler.

For example, makemust not call gcc or g++ but must use the $(CC) and $(CXX) variables
instead. The default build procedure must use standard compiler options only23 : -c, -D,
-E, -I, -L, -l, -O, -o and -U.

3.2.6 2.6. Usage and Input/Output

An IPOL program should be minimal and only perform the algorithm published in IPOL.
It must be usable from the command line environment without any user interaction, taking
all its parameters from the command line.

An IPOL program must be able to read the input data and write the final output data
in at least one of these formats25: PNG, TIFF or PNM for raster images, EPS or SVG for
vector images, VRML or PLY for meshes, and plain text for other data. Other file formats
can be added to this list on request, if they are clearly defined and widely used.

Annex C provides some information for IPOL authors to help them use external libraries
to read and write images.

3.2.7 2.7. Computing Resources

In the demo environment, an IPOL program should not use more than 1 GB of memory
and must not use more than 8 MB of stack memory space (for recursion, local variables
and variable-length arrays). The program must not need more than 30 seconds to process
typical data. For slow algorithms, this limit may be achieved with parallel processing or
a limit on input size.

Annex C provides some information for IPOL authors to help them improve the perfor-
mance of their implementation.

23Standard compiler options are defined by the POSIX c99 specification24. Other options depending
on the environment (hardware, operating system, compiler) may also be provided, for example for an
optimized compilation, but they must not be used in the default build procedure.

25PNG is defined by the IETF RFC208326, TIFF is defined by the Adobe TIFF 6.0 Specification27,
PNM (PBM, PGM and PPM) is defined by the netpbm documentation28, EPS is defined by the Adobe
Encapsulated PostScript 3.0 Specification29, SVG is defined by the W3C Scalable Vector Graphics 1.0
Specification30, and VRML is defined by the ISO/IEC Virtual Reality Modeling Language Specification31.
There is no formal published specification of PLY, but this simple format introduced by the Standford 3D
Scanning Repository32 is documented on Paul Bourke’s site33. Plain text output should be understandable
by a human reader and easy to parse with a software.

8

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/c99.html
http://tools.ietf.org/html/rfc2083
http://partners.adobe.com/public/developer/tiff/
http://netpbm.sourceforge.net/doc/#formats
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://www.w3.org/TR/SVG10/
http://www.w3.org/TR/SVG10/
http://www.web3d.org/x3d/specifications/vrml/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://paulbourke.net/dataformats/ply/

3.3 3. Copyright, License and Patents

3.3.1 3.1. Copyright Attribution

Every source code file in an IPOL program must mention its authors in a copyright
attribution line at the top of the file. This mention may be omitted in very simple files
such as header code.

Every person whose contribution to this file is not trivial and implies some creative work
must be credited. Of course, if the authors use or modify a file previously written by
other persons, the copyright attribution to the previous authors must not be removed.
The copyright attribution must include the years of production of the work, the full name
and an e-mail address for contributor. It may also include other relevant information such
as the employer, affiliation or web site.

An simple example for a single author can be:

Copyright (C) 2011, Jane Doe <jane.doe@example.org>

A complex example with many contributors can be:

Copyright (C) 1998-2003, Taro Yamada <taro.yamada@example.jp>

Copyright (C) 2005-2011, Juan Perez <juan.perez@example.es>

Copyright (C) 2011, Marie Untel, ENS Cachan

<marie.untel@ens-cachan.fr>

3.3.2 3.2. Patent Warning

When the authors are aware or suspect that a source code file implements an algorithm
which might be linked to a patent (the main algorithm published on IPOL or another algo-
rithm used for this implementation), a patent warning must be inserted after the copyright
attribution, in every file potentially linked to this patent. This wording is recommended:

This file implements an algorithm possibly linked to the patent

<REFERENCE OF THE PATENT>.

This file is made available for the exclusive aim of serving as

scientific tool to verify the soundness and completeness of the

algorithm description. Compilation, execution and redistribution

of this file may violate patents rights in certain countries.

The situation being different for every country and changing

over time, it is your responsibility to determine which patent

rights restrictions apply to you before you compile, use,

modify, or redistribute this file. A patent lawyer is qualified

to make this determination.

9

If and only if they don’t conflict with any patent terms, you

can benefit from the following license terms attached to this

file.

3.3.3 3.3. License

Every source code file must mention a usage and redistribution license after the copyright
attribution (and patent warning for algorithms potentially linked to a patent). Of course,
if the authors use or modify a file previously written by other persons, the license chosen
by the previous authors must not be modified.

• When the authors are not aware of a possible patent issue, the license must be a
free software license of the GPL34/LGPL35/AGPL36 or BSD37 type.

• When a source code file can be linked to a patented algorithm and the source code
authors are not the patent inventors, the file must be distributed under the BSD
license.

• When a source code file can be linked to a patented algorithm and the authors of the
source code are the patent inventors, the file must be distributed either under the
BSD license or “for research and education only”38.

These wordings are recommended:

This program is free software: you can use, modify and/or

redistribute it under the terms of the GNU General Public

License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later

version. You should have received a copy of this license along

this program. If not, see <http://www.gnu.org/licenses/>.

This program is free software: you can use, modify and/or

redistribute it under the terms of the simplified BSD

License. You should have received a copy of this license along

this program. If not, see

<http://www.opensource.org/licenses/bsd-license.html>.

34http://www.gnu.org/licenses/gpl.html
35http://www.gnu.org/licenses/lgpl.html
36http://www.gnu.org/licenses/agpl.html
37http://www.opensource.org/licenses/bsd-license.php
38Distribution “for research and education” can help avoid conflicts between patent rights and software

license when the patent inventors are the source code authors. It is not needed in other situations because
the validity of the license will depend on the local patent regulations, as stated in the last sentence of the
patent warning.

10

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/agpl.html
http://www.opensource.org/licenses/bsd-license.php
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/agpl.html
http://www.opensource.org/licenses/bsd-license.php

This program is provided for research and education only: you can

use and/or modify it for these purposes, but you are not allowed

to redistribute this work or derivative works in source or

executable form. A license must be obtained from the patent right

holders for any other use.

The exact terms can differ, for example when a different GPL/LGPL/AGPL license version
is chosen. The full text of the license must be included in a separate file with the source
code.

IPOL authors should verify that the usage of these licenses for their software publications
complies with their employer policy and local situation and jurisdiction.

3.4 4. Documentation

3.4.1 4.1. README.txt

Every IPOL program must provide a file named README.txt in the base folder and written
in plain text and in English. This README.txt file must include the following essential
information, in any order:

• name and brief description of the program

• reference to the IPOL article

• authors and contact information

• version number and release date

• location of future releases and updates

• copyright, patent and license information

• tools and libraries needed to compile and use the program

• compilation instructions

• usage instructions and example

• changes in the program since it was first published in IPOL

This README.txt file may contain other information, and may also be completed by
another documentation, possibly with more details, in text, PDF, HTML or any other
format.

For a simple code, the license information in README.txt can be

11

This program is written by Jane Doe <jane.doe@example.org> and

distributed under the terms of the GPLv3 license.

A complex case (multiple authors, patents and licenses) can be:

This program is written by Taro Yamada <taro.yamada@example.jp>

and Juan Perez <juan.perez@example.es> with contributions from

Marie Untel, ENS Cachan <marie.untel@ens-cachan.fr>.

- mmatch.c and rot_tree.c may be linked to the pending EU patent

123.456 by Taro Yamada and Juan Perez and are provided for

scientific and education only.

- demoz.c may be linked to the US patent 65.43.21 by Jane Doe;

see the file for license terms.

- eizo.c and linalg_lib.c are distributed under the terms

of the BSD license.

- All the other files are distributed under the terms of the

LGPLv3 license.

3.4.2 4.2. Readability

In an IPOL program, the source code is a primary material for the publication. It will be
reviewed, published and read like any other part of the article. The authors must take
care of the clarity of their program.

The source code of an IPOL program must be consistently indented and spaced. Lines
should be limited to 80 characters and should not end with blank characters (spaces,
tabs, . . .). Files should not have more than 1000 lines. The line terminations should be
the same (DOS/Windows CRLF or UNIX CR style) for all the files of the program.

Functions should be grouped by abstraction level in different source code files:

• the main() function, command-line processing and input/output calls in one file,

• the implementation of the algorithm described and reviewed in the IPOL article in
one or more other files,

• and the implementation of auxiliary and external routines in one or more other files.

Annex D provides some examples of programs that can be used to improve the indentation,
spacing and presentation of a source code.

12

3.4.3 4.3. Implementation and Comments

The source code of an IPOL program must be commented precisely and exhaustively.
Authors should target the “1/8 comment/instruction ratio”, but the quality of the com-
ments is more important than the quantity. The source code must be written in English,
including all variables, functions names and comments.

Authors must ensure that the code is understandable, to the satisfaction of the editor
and reviewers, so that consistency between the description of the algorithm and its imple-
mentation can be verified. The relation between each part of the implementation and the
respective part of the description of the algorithm must be explained in the comments.

Authors should apply simpler implementations when available, follow the conventions of
the programming language, and use comments to explain implementation choices and every
complicated or subtle point in the program. Clarity is more important than virtuosity.

Every function must be documented with at least one line explaining what the function
is doing, and the meaning of its parameters and return value.

The Doxygen39 source code documentation format is recommended for every IPOL Pro-
gram.

Annex D provides some examples of programs that can be used to count the comment,
instruction and blank lines.

3.4.4 4.4. Example Data

The authors should provide an example of input file to test the IPOL program and the
result to expect when this input file is processed by the program.

4 Annexes

The annexes are not part of the guidelines. They are provided to help authors and editors
follow the guidelines.

4.1 A. Key Words

The key words must, must not, required, shall, shall not, should, should not,
recommended, may, and optional in this document are to be interpreted as described
in IETF RFC211940.

39http://www.stack.nl/~dimitri/doxygen/
40http://tools.ietf.org/html/rfc2119

13

http://www.stack.nl/~dimitri/doxygen/
http://tools.ietf.org/html/rfc2119
http://www.stack.nl/~dimitri/doxygen/
http://tools.ietf.org/html/rfc2119

must This word, or the terms required or shall, mean that the definition is an absolute
requirement.

must not This phrase, or the phrase shall not, mean that the definition is an absolute
prohibition.

No article will be published in IPOL if a program included in this article doesn’t follow
such requirements or prohibitions.

should This word, or the adjective recommended, mean that there may exist valid rea-
sons in particular circumstances to ignore a particular item, but the full implications
must be understood and carefully weighed before choosing a different course.

should not This phrase, or the phrase not recommended mean that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable
or even useful, but the full implications should be understood and the case carefully
weighed before implementing any behavior described with this label.

The rationale for not following such recommendations must be agreed by the authors,
reviewers and editor before an article is accepted for publication.

may This word, or the adjective optional, mean that an item is truly optional. One
author may choose to include the item because a particular article requires it or
because the author feels that it enhances the software while another author may
omit the same item.

4.2 B. Compression and Archive Tools

IPOL authors can consider that the files produced by the following tools are correct zip
and tar/gzip archives:

• on Linux systems, the tar (usually “GNU tar”), zip (usually “Info-Zip zip”) and
gzip programs;

• on Mac OS X systems, the “Create Archive” feature of the graphical interface and
the tar (usually “BSD tar”) and gzip programs;

• on Windows systems, the “Compressed Folder” feature of the graphical interface and
the 7-zip41 program.

41http://www.7-zip.org/

14

http://www.7-zip.org/
http://www.7-zip.org/

4.3 C. Coding Help

The authors of the IPOL article do not need to be the authors of all the implementation
of their algorithm. They can use their own code or code from other IPOL programs or
other software projects and libraries, or a combination of these options. This is encouraged
when it helps improve the quality of the implementation. All the source code must follow
the guidelines (be standard, portable, readable and documented), regardless of its origin.
The original copyrights and licenses of the reused code parts must of course be respected.

Some help to read and write image files is provided in the IPOL wiki42 with simplified
interfaces to libpng and libtiff and some examples. IPOL authors can also find in this
wiki a list of contributions and tools43 from IPOL authors willing to share.

The IPOL editorial board can provide some help to the authors to accelerate their code
and guide them for performance profiling and parallel programming. The IPOL discussion
list44 is the good place for any questions related to IPOL, including the implementation
work.

4.4 D. Source Code Tools

IPOL authors can use these programs to improve the presentation and clarity of their
source code: indent45 (C, Linux), uncrustify46 (C/C++, Linux and Windows), astyle47

(C/C++, Linux, Mac OS X and Windows) and UniversalIndentGUI48 (cross-platform
graphical frontend).

Tools like cloc49, ohcount50 and sloccount51 can be used to count the comments, instruc-
tions and blank lines and evaluate the comment/instruction ratio.

42http://tools.ipol.im/wiki/author/code/tools/
43http://tools.ipol.im/wiki/author/code/hatchery/
44http://tools.ipol.im/mailman/listinfo/discuss
45http://www.gnu.org/software/indent/
46http://uncrustify.sourceforge.net/
47http://astyle.sourceforge.net/
48http://universalindent.sourceforge.net/
49http://cloc.sourceforge.net/
50http://ohcount.sourceforge.net/
51http://sloccount.sourceforge.net/

15

http://tools.ipol.im/wiki/author/code/tools/
http://tools.ipol.im/wiki/author/code/hatchery/
http://tools.ipol.im/mailman/listinfo/discuss
http://tools.ipol.im/mailman/listinfo/discuss
http://www.gnu.org/software/indent/
http://uncrustify.sourceforge.net/
http://astyle.sourceforge.net/
http://universalindent.sourceforge.net/
http://cloc.sourceforge.net/
http://ohcount.sourceforge.net/
http://sloccount.sourceforge.net/
http://tools.ipol.im/wiki/author/code/tools/
http://tools.ipol.im/wiki/author/code/hatchery/
http://tools.ipol.im/mailman/listinfo/discuss
http://www.gnu.org/software/indent/
http://uncrustify.sourceforge.net/
http://astyle.sourceforge.net/
http://universalindent.sourceforge.net/
http://cloc.sourceforge.net/
http://ohcount.sourceforge.net/
http://sloccount.sourceforge.net/

	In Brief: Check List, Check Service and Examples
	About this Document
	Status
	Revisions
	Vocabulary

	Guidelines
	1. Packaging and Content
	1.1. Compressed Archive
	1.2. Archive Name, Program Name and Version
	1.3. File and Folder Names
	1.4. Hidden and Useless Files

	2. Implementation
	2.1. Source Code
	2.2. Programming Language
	2.3. Portability
	2.4. Dependencies
	2.5. Compilation
	2.6. Usage and Input/Output
	2.7. Computing Resources

	3. Copyright, License and Patents
	3.1. Copyright Attribution
	3.2. Patent Warning
	3.3. License

	4. Documentation
	4.1. README.txt
	4.2. Readability
	4.3. Implementation and Comments
	4.4. Example Data

	Annexes
	A. Key Words
	B. Compression and Archive Tools
	C. Coding Help
	D. Source Code Tools

