
IPOL Software Guidelines — version 1.03 (draft)

2015-06-21

IPOL reviews, uses, publishes and distributes some software provided by the authors. With
the requirements and recommendations expressed in these guidelines, we intend to facilitate
the production and review of verifiable and usable software for reproducible research.

Contents

In Brief: Check List, Check Service and Examples 2

About this Document 3

Status . 3

Revisions . 3

Vocabulary . 4

License . 4

Guidelines 4

1. Packaging and Content . 4

1.1. Compressed Archive . 4

1.2. Archive Name, Program Name and Version 5

1.3. File and Folder Names . 5

1.4. Hidden and Useless Files . 5

2. Implementation . 6

2.1. Source Code . 6

2.2. Programming Language . 6

2.3. Portability . 7

1

2.4. Compilation [only C and C++] . 8

2.5. Interpretation [only M-code] . 8

2.6. External Libraries and Toolboxes . 8

2.7. Support Code . 9

2.8. Usage and Input/Output . 10

2.9. Computing Resources . 10

3. Copyright, License and Patents . 11

3.1. Copyright Attribution . 11

3.2. Patent Warning . 11

3.3. License . 12

4. Documentation . 13

4.1. README.txt . 13

4.2. Readability . 15

4.3. Implementation and Comments . 15

4.4. Example Data . 16

Annexes 16

A. Key Words . 16

B. Compression and Archive Tools . 17

C. Coding Help . 17

D. Source Code Tools . 17

2

In Brief: Check List, Check Service and Examples

The list hereafter is a summary of the guidelines, to quickly check a program. This docu-
ment details and explains the guidelines later.

Requirements for all submissions:

• zip or tar/gzip archive name version.{zip,tar.gz,tgz}, less than 2 MB

• everything into a name version/ folder

• file names with a-z,A-Z,0-9,-, ,.

• no hidden file, backup or useless file, no binary

• README.txt essential information

• example input data and result

• copyright attribution and GPL/BSD license info in every source file

• correct, clean code in English

• non-interactive interface

• max 1 GB memory, max 30 s computation in the demo environment

Requirements specific to C and C++:

• C89, C99 or C++98 code tested with gcc -std=xxx -Wall -Wextra -Werror

• portable code, 32/64-bits, nothing specific to an operating system

• only libtiff, libjpeg, libpng, zlib, fftw, libgsl, libeigen, cblas and clapack

external libraries

• compilation with make or cmake, only standard options, make uses $(CC) or $(CXX)

• can read/write in PNG, TIFF, PNM, EPS, SVG, VRML or PLY format

Requirements specific to M-code:

• each function in a single file with the same name as the function

• run the whole algorithm by calling a single function on numeric input

• does not open windows or plots, does not save or read files

3

• the demo program reads and writes image files, but does not open windows

• available toolboxes: image processing, wavelets, optimization

General recommendations:

• max 80 characters per line, max 1000 lines per file

• algorithmic and auxiliary code in different files

• detailed comments for every function and every implementation step

• the M-code runs on any version of Matlab and Octave

A service to check an C or C++ code submission against some of these guidelines is
available with examples of programs following the guidelines at https://tools.ipol.im/
swg_check/. Authors can use this service to verify their code before submission, and by
reviewers as a preliminary validation of the software1.

Example of valid submission in C: https://tools.ipol.im/wiki/doc/tools/axpb.tar.
gz

Example of valid submission in Matlab: https://tools.ipol.im/wiki/doc/tools/oaxpb-1.
tar.gz

About this Document

Status

This document is the a draft for the next official IPOL Software Guidelines, version 1.03,
published on XXXXXXX YY, 2015. It is immediately applicable and obsoletes previ-
ous versions. The reference version is available at https://tools.ipol.im/wiki/ref/

software_guidelines/.

Revisions

When needed, future versions of this document will be published and will replace the cur-
rent version. The current version will still be available, with a summary of the differences.
This revision will be announced on the IPOL website2 and the IPOL discussion list3.

Changes from version 1.02:

1The absence of error reported by this service doesn’t imply that all the guidelines are correctly followed.
Some guidelines need a human review. Also, in some rare cases this service may report false warnings.

2http://www.ipol.im/
3http://tools.ipol.im/mailman/listinfo/discuss

4

https://tools.ipol.im/swg_check/
https://tools.ipol.im/swg_check/
https://tools.ipol.im/wiki/doc/tools/axpb.tar.gz
https://tools.ipol.im/wiki/doc/tools/axpb.tar.gz
https://tools.ipol.im/wiki/doc/tools/oaxpb-1.tar.gz
https://tools.ipol.im/wiki/doc/tools/oaxpb-1.tar.gz
https://tools.ipol.im/wiki/ref/software_guidelines/
https://tools.ipol.im/wiki/ref/software_guidelines/
http://www.ipol.im/
http://tools.ipol.im/mailman/listinfo/discuss
http://www.ipol.im/
http://tools.ipol.im/mailman/listinfo/discuss

• Introduce support for the M language (interpreted by Matlab and Octave)

• Separate the checklist into requirements and recommendation

• Separate the C-only and the M-only parts

Vocabulary

These guidelines are designed for a research journal whose articles include some software
material. They are written for IPOL, but may be used by others.

In this document, the term “published software” designates the reference software imple-
mentation of an algorithm submitted for publication in a journal article. The “web demo”
is an online facility used to test this software. An article may contain more than one
software, and a demo may use more than one software.

In this document, the words must, must not, should, should not, recommended, and
may are used to express required, recommended, and optional items. IETF RFC21194

describes their interpretation, and Annex A adds details in the context of these guidelines.

License

This document is licensed under a CC-BY License5. It can be freely reused and modified
as long as its origin is credited. Modified versions must be mentioned as such and not
misrepresented as the original IPOL version.

Guidelines

1. Packaging and Content

1.1. Compressed Archive

A published software must be packaged as a compressed archive file. This file archive can
either be a single volume .ZIP compressed archive or a GZIP compressed tar archive6. The
size of the compressed archive file should be less than 2 MB. In the remainder of this
document, we will use the terms “zip archive” and “tar/gzip archive” for convenience.

4http://tools.ietf.org/html/rfc2119
5http://creativecommons.org/licenses/by/3.0/
6These file formats are defined by the PKZIP APPNOTE specification7, version 6.3.2, for the .ZIP

compressed archive format, the IETF RFC19528 for the GZIP compressed format, and the POSIX.1 ustar
definition9 for the tar archive format.

5

http://tools.ietf.org/html/rfc2119
http://creativecommons.org/licenses/by/3.0/
http://tools.ietf.org/html/rfc2119
http://creativecommons.org/licenses/by/3.0/
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://tools.ietf.org/html/rfc1952
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06

Annex B of this document provides some examples of programs that can be used to produce
such compressed archives.

1.2. Archive Name, Program Name and Version

The compressed archive file of a published software must be named according to the
name version.extension pattern, where:

• name and version must consist only of lower case letters (a-z), digits (0-9), minus
(-) and period (.) signs;

• name must be at least two characters long and start with a letter; it must indicate
the name of the program; this name can be the name of the executable program file,
or another name, at the author’s will;

• version must start with a digit; it must indicate a version number for the program,
in the sense that two different releases of the program must have two different
version numbers; if no version numbering scheme is established for the program,
the YYYYMMDD pattern based on the year, month and day of the release date may be
used;

• extension must be zip for zip archives and tar.gz or tgz for tar/gzip archives.

1.3. File and Folder Names

All the files and folders extracted from the compressed archive must be located inside a
base folder named name version, where name and version are identical to those used for
the compressed archive file name. Absolute path must not be used for files and folders
extracted from the archive.

The name of all files and folders composing the published software must consist only of
lower or upper case letters (a-z, A-Z), digits (0-9), minus (-), underscore () and period
(.) signs. They should start with a letter.

The names should provide a meaningful hint of the content of these files and folders.

1.4. Hidden and Useless Files

A published software should not include hidden files or folders or by-products of the tools
used by the authors, such as (but not limited to):

• files inserted by file managers (.DS Store, .directory);

6

• folders inserted by version control managers (.svn, .git);

• backup versions (filename∼, filename.bak).

The software should not be distributed with files not useful to build, use or study the
implementation of the algorithm published in the journal.

2. Implementation

2.1. Source Code

A published software must include all the material necessary to build one or more exe-
cutable program files implementing the algorithm published in the journal. This material
must be provided in human-readable source code form. A published software must not be
distributed with binary precompiled files if these files can be obtained from source code10.

Annex C provides some information for the authors to help them perform some frequent
implementation tasks.

2.2. Programming Language

The source code of a published software must follow the published standard syntax of
one or more supported programming languages. The following languages are currently
supported: C89, C99, C++98 and M-code.

• C89 is defined by the ANSI X3.159-1989 Programming Language C standard11

• C99 is defined by the ISO/IEC 9899:1999 Programming languages — C standard12,

• C++98 is defined by the ISO/IEC 14882:1998 Programming languages — C++ stan-
dard13.

• The Matlab language is not formally defined. Instead, it is informally understood as
the set of programs that are accepted by the current Matlab release.

If the authors want to publish their program with another well-known and standardized
language (such as Python, Fortran 90 or C11), they should contact the editorial board to
investigate the possibilities.

10If the authors want to distribute binary versions, they can do it in the journal as supplementary
material but not via the compressed archive of the published software covered by these guidelines.

11http://flash-gordon.me.uk/ansi.c.txt
12http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
13http://www-d0.fnal.gov/~dladams/cxx_standard.pdf

7

http://flash-gordon.me.uk/ansi.c.txt
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www-d0.fnal.gov/~dladams/cxx_standard.pdf
http://www-d0.fnal.gov/~dladams/cxx_standard.pdf
http://flash-gordon.me.uk/ansi.c.txt
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www-d0.fnal.gov/~dladams/cxx_standard.pdf

Authors should test their C and C++ software with the gcc compiler in strict compilation
mode14 before submitting it to the journal. This code should compile without any warning
from the compiler version available at publication time.

[Only C and C++] The source code may use the OpenMP 3.015 API for shared multi-
processing programming (parallel programming) but it must also compile and provide the
same results (albeit slower) without OpenMP. This implies that every call to the OpenMP
run-time library must be hidden behind #ifdef OPENMP macros. Usage of OpenMP
must not be tied to a specific number of processors and must only rely on the OpenMP
standard, not on any vendor implementation.

Other techniques for accelerated computing, like OpenCL16 and OpenACC17, are not sup-
ported by the journal. These techniques can be used in a published software, but they will
not be reviewed nor used in the web demo.

2.3. Portability

The source code of a published software must not require any extension of the language or
its standard library, or any resource specific to a hardware environment, operating system
or compiler. These extensions and resources may be used to achieve better performances
if they are available but their availability must be detected during the compilation or
execution and an alternative portable implementation must be used in their absence.
This includes (but is not limited to)

• language dialects specific to a compiler (GNU C, Microsoft C);

• standard library functions specific to an implementation (drand48());

• assembler code or “intrinsic functions” mapped to a processor instruction (mulps,
builtin ia32 mulps());

• computing on specialized hardware (GPGPU);

• operating system calls (Win32 GetSystemTime(), POSIX gettimeofday());

• file system locations (C:\Documents and Settings, /tmp);

• code specific to a memory model environment (32-bits, 64-bits).

Special attention will be given to the Linux 64-bit environment because it is currently the
primary environment for the web demos. But the program must also be usable in other
environments and this portability must not be limited to the Win32/POSIX alternative.

14C89, C99 and C++98 code can be tested with gcc -std=xxx -Wall -Wextra -Werror where xxx is
c89, c99 or c++98.

15http://www.openmp.org/mp-documents/spec30.pdf
16http://www.khronos.org/registry/cl/
17http://www.openacc-standard.org/

8

http://www.openmp.org/mp-documents/spec30.pdf
http://www.khronos.org/registry/cl/
http://www.openacc-standard.org/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.khronos.org/registry/cl/
http://www.openacc-standard.org/

2.4. Compilation [only C and C++]

A published software must be compiled by an automated non-interactive build procedure
with make or cmake. This build tool must not be configured to use any special compiler.

The default build procedure must use standard compiler options only18 : -c, -D, -E, -I,
-L, -l, -O, -o and -U.

In addition, make must not call gcc or g++ but must call the standard cc and c++ aliases
instead. To select the compilers at compile time, make should use the standard $(CC)

and $(CXX) variables. When the language dialect matters (C89 vs. C99) , make should
use additional variables:

C89=cc # C98 compiler

C99=c99 # C99 compiler

CC=$(C99) # the default POSIX C compiler is c99

compiling C89 code

foo.o : foo.c

$(C89) -c foo.c -o foo.o

compiling C99 code

bar.o : bar.c

$(C99) -c bar.c -o bar.o

2.5. Interpretation [only M-code]

The Matlab language lacks a formal specification20, thus the only way to test whether
a Matlab program is correct is to run it inside the proprietary Matlab interpreter. The
version of Matlab installed on the IPOL servers is Matlab-8.5.0, released on February 12,
2015. The code must work with at least this version of Matlab, or with Octave-4.0.

Authors should test their M-code with the Octave interpreter and one or more versions
of Matlab and verify that it works correctly.

The M-code must not rely on the Octave extensions of the Matlab language.

2.6. External Libraries and Toolboxes

A published software must not use external software components except for the libraries,
APIs and toolboxes listed hereafter. The program may expect these basic software com-
ponents to be correctly installed and configured during the compilation and execution:

18Standard compiler options are defined by the POSIX c99 specification19. Other options depending
on the environment (hardware, operating system, compiler) may also be provided, for example for an
optimized compilation, but they must not be used in the default build procedure.

20The official position of Mathworks, the authors of Matlab, is21 the following: “The MATLAB Syntax
and Semantics are not published to the public.”

9

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/c99.html
http://www.mathworks.com/matlabcentral/newsreader/view_original/156520

• libtiff22 version 3.x or 4.x and libpng23 version 1.4.x to read and write files, with
their dependencies libjpeg24 version 8.x, zlib25 version 1.2.x;

• fftw26 version 3.x (single and double precision) for Fourier transforms;

• libgsl27 version 1.14+ for mathematical routines.

• libeigen28 version 3.x for linear algebra29.

• cblas30 and clapack31 for linear algebra.

• The Matlab Image Processing Toolbox32

• The Matlab Optimization Toolbox33

• The Matlab Wavelet Toolbox34

Other libraries can be examined and may be added to this list on request, if they are
portable, widely used, with a stable API.

This restriction only applies to software components used by the published software but
not distributed in source form with the program. Other libraries can be used if provided
with the published software, as detailed in the next section.

In the case of Matlab toolboxes, authors should verify that their program only depends
on the functions that are most common among all the versions of the Matlab toolbox and
of its Octave counterpart.

2.7. Support Code

Authors may include some code from other software projects and libraries in their pub-
lished software to reuse standard and well-defined algorithmic blocks, if it helps improve
the quality of the implementation. This support code must follow the current implemen-
tation guidelines: distributed in source form, written in a standard programming language,

22http://www.remotesensing.org/libtiff/
23http://libpng.org/pub/png/libpng.html
24http://www.ijg.org/
25http://zlib.net/
26http://www.fftw.org/
27http://www.gnu.org/software/gsl/
28http://eigen.tuxfamily.org/
29Only the “official” Eigen modules are allowed, no code form the “unsupported” experimental section.
30http://www.netlib.org/blas/
31http://www.netlib.org/lapack/
32http://www.mathworks.com/products/image/
33http://www.mathworks.com/products/optimization/
34http://www.mathworks.com/products/wavelet/

10

http://www.remotesensing.org/libtiff/
http://libpng.org/pub/png/libpng.html
http://www.ijg.org/
http://zlib.net/
http://www.fftw.org/
http://www.gnu.org/software/gsl/
http://eigen.tuxfamily.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.mathworks.com/products/image/
http://www.mathworks.com/products/optimization/
http://www.mathworks.com/products/wavelet/
http://www.remotesensing.org/libtiff/
http://libpng.org/pub/png/libpng.html
http://www.ijg.org/
http://zlib.net/
http://www.fftw.org/
http://www.gnu.org/software/gsl/
http://eigen.tuxfamily.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.mathworks.com/products/image/
http://www.mathworks.com/products/optimization/
http://www.mathworks.com/products/wavelet/

portable, automatically compiled, without external dependencies except for the ones al-
lowed.

To be reusable, the published software should only use the support code via calls to
algorithmic functions, and should not be based on it. The function calls to this code
should be clearly identified, with a description of their expected behavior.

This support code should be kept as small as possible; a huge library should not be
involved for a tiny algorithm: to compute the eigenvalues of a 2×2 matrix, authors should
not use a linear algebra library.

2.8. Usage and Input/Output

A published software should be minimal and only perform the algorithm published in
the journal. It must be usable from the command line environment without any user
interaction, taking all its parameters from the command line.

A published software must be able to read the input data and write the final output data
in at least one of these formats35: PNG, TIFF or PNM for raster images, EPS or SVG for
vector images, VRML or PLY for meshes, and plain text for other data. Other file formats
can be added to this list on request, if they are clearly defined and widely used.

Annex C provides some information for the authors to help them use external libraries to
read and write images.

A published software must return a success exit code (exit(EXIT SUCCESS)) when the
algorithm could be successfully executed, and a failure code (exit(EXIT FAILURE)) it
could not, for any reason such as (but not limited to) wrong command-line parameters,
missing input files or wrong input data. Memory errors (segmentation faults) should not
occur during the execution, and must not occur as the result of wrong command-line
parameters.

2.9. Computing Resources

In the demo environment, a published software should not use more than 1 GB of memory
and must not use more than 8 MB of stack memory space (for recursion, local variables
and variable-length arrays). The program must not need more than 30 seconds to process

35PNG is defined by the IETF RFC208336, TIFF is defined by the Adobe TIFF 6.0 Specification37,
PNM (PBM, PGM and PPM) is defined by the netpbm documentation38, EPS is defined by the Adobe
Encapsulated PostScript 3.0 Specification39, SVG is defined by the W3C Scalable Vector Graphics 1.0
Specification40, and VRML is defined by the ISO/IEC Virtual Reality Modeling Language Specification41.
There is no formal published specification of PLY, but this simple format introduced by the Standford 3D
Scanning Repository42 is documented on Paul Bourke’s site43. Plain text output should be understandable
by a human reader and easy to parse with a software.

11

http://tools.ietf.org/html/rfc2083
http://partners.adobe.com/public/developer/tiff/
http://netpbm.sourceforge.net/doc/#formats
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://www.w3.org/TR/SVG10/
http://www.w3.org/TR/SVG10/
http://www.web3d.org/x3d/specifications/vrml/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://paulbourke.net/dataformats/ply/

typical data. For slow algorithms, this limit may be achieved with parallel processing or
a limit on input size.

Annex C provides some information for the authors to help them improve the performance
of their implementation.

3. Copyright, License and Patents

3.1. Copyright Attribution

Every source code file in a published software must mention its authors in a copyright
attribution line at the top of the file. This mention may be omitted in trivial files such as
header code.

Every person whose contribution to this file is not trivial and implies some creative work
must be credited. Of course, if the authors use or modify a file previously written by
other persons, the copyright attribution to the previous authors must not be removed.
The copyright attribution must include the years of production of the work, the full name
and an e-mail address for contributor. It may also include other relevant information such
as the employer, affiliation or web site.

An simple example for a single author can be:

Copyright (C) 2011, Jane Doe <jane.doe@example.org>

A complex example with three contributors can be:

Copyright (C) 1998-2003, Taro Yamada <taro.yamada@example.jp>

Copyright (C) 2005-2011, Juan Perez <juan.perez@example.es>

Copyright (C) 2011, Marie Untel, ENS Cachan

<marie.untel@ens-cachan.fr>

3.2. Patent Warning

When the authors are aware or suspect that a source code file implements an algorithm
which might be linked to a patent (the main algorithm published in the journal or an-
other algorithm used for this implementation), a patent warning must be inserted after
the copyright attribution, in every file potentially linked to this patent. This wording is
recommended:

This file implements an algorithm possibly linked to the patent

<REFERENCE OF THE PATENT>.

This file is made available for the exclusive aim of serving as

12

scientific tool to verify the soundness and completeness of the

algorithm description. Compilation, execution and redistribution

of this file may violate patents rights in certain countries.

The situation being different for every country and changing

over time, it is your responsibility to determine which patent

rights restrictions apply to you before you compile, use,

modify, or redistribute this file. A patent lawyer is qualified

to make this determination.

If and only if they don’t conflict with any patent terms, you

can benefit from the following license terms attached to this

file.

3.3. License

Every source code file must mention a usage and redistribution license after the copyright
attribution (and patent warning for algorithms potentially linked to a patent). Of course,
if the authors use or modify a file previously written by other persons, the license chosen
by the previous authors must not be modified.

• When the authors are not aware of a possible patent issue, the license must be one of
the following free software licenses: GPL44, LGPL45, AGPL46, BSD47, or the CC048

dedication.

• When a source code file can be linked to a patented algorithm and the source code
authors are not the patent inventors, the file must be distributed under the BSD
license or CC0 dedication.

• When a source code file can be linked to a patented algorithm and the authors of the
source code are the patent inventors, the file must be distributed either under the
BSD license, the CC0 dedication or “for research and education only”49.

These wordings are recommended:

This program is free software: you can use, modify and/or

redistribute it under the terms of the GNU General Public

44http://www.gnu.org/licenses/gpl.html
45http://www.gnu.org/licenses/lgpl.html
46http://www.gnu.org/licenses/agpl.html
47http://www.opensource.org/licenses/bsd-license.php
48http://creativecommons.org/publicdomain/zero/1.0/
49Distribution “for research and education” can help avoid conflicts between patent rights and software

license when the patent inventors are the source code authors. It is not needed in other situations because
the validity of the license will depend on the local patent regulations, as stated in the last sentence of the
patent warning.

13

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/agpl.html
http://www.opensource.org/licenses/bsd-license.php
http://creativecommons.org/publicdomain/zero/1.0/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/agpl.html
http://www.opensource.org/licenses/bsd-license.php
http://creativecommons.org/publicdomain/zero/1.0/

License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later

version. You should have received a copy of this license along

this program. If not, see <http://www.gnu.org/licenses/>.

This program is free software: you can use, modify and/or

redistribute it under the terms of the simplified BSD

License. You should have received a copy of this license along

this program. If not, see

<http://www.opensource.org/licenses/bsd-license.html>.

To the extent possible under law, the authors have dedicated all

copyright and related and neighboring rights to this software to

the public domain worldwide. This software is distributed without

any warranty. You should have received a copy of the CC0 Public

Domain Dedication along with this software. If not, see

<http://creativecommons.org/publicdomain/zero/1.0/>.

This program is provided for research and education only: you can

use and/or modify it for these purposes, but you are not allowed

to redistribute this work or derivative works in source or

executable form. A license must be obtained from the patent right

holders for any other use.

The exact terms can differ, for example when a different GPL/LGPL/AGPL license version
is chosen. The full text of the license must be included in a separate file with the source
code.

Authors should verify that the usage of these licenses for their software publications
complies with their employer policy and local situation and jurisdiction.

4. Documentation

4.1. README.txt

Every published software must provide a file named README.txt in the base folder and
written in plain text and in English. This README.txt file must include the following
essential information, in any order:

• name and brief description of the program

• reference to the article

• authors and contact information

14

• version number and release date

• location of future releases and updates

• copyright, patent and license information

• tools and libraries needed to compile and use the program

• compilation instructions

• usage instructions and example

• changes in the software since it was first published

• list of the files, mentioning which files are reviewed

• list of known defects

• credits and acknowledgments

If this information is too long, the README.txt file may be split: compilation instructions
in INSTALL.txt, usage instructions and example in USAGE.txt, changes in the software in
CHANGES.txt and list of files in MANIFEST.txt. These secondary information files must
be referenced in README.txt.

The README.txt file may contain other information, and may also be completed by an-
other documentation, possibly with more details, in text, PDF, HTML or any other format.

For a simple code, the license information in README.txt can be

This program is written by Jane Doe <jane.doe@example.org> and

distributed under the terms of the GPLv3 license.

A complex case (multiple authors, patents and licenses) can be:

This program is written by Taro Yamada <taro.yamada@example.jp>

and Juan Perez <juan.perez@example.es> with contributions from

Marie Untel, ENS Cachan <marie.untel@ens-cachan.fr>.

- mmatch.c and rot_tree.c may be linked to the pending EU patent

123.456 by Taro Yamada and Juan Perez and are provided for

scientific and education only.

- demoz.c may be linked to the US patent 65.43.21 by Jane Doe;

see the file for license terms.

- eizo.c and linalg_lib.c are distributed under the terms

of the BSD license.

- All the other files are distributed under the terms of the

LGPLv3 license.

15

4.2. Readability

In a published software, the source code is a primary material for the publication. It will
be reviewed, published and read like any other part of the article. The authors must take
care of the clarity of their program.

The source code of a published software must be consistently indented and spaced. Lines
should be limited to 80 characters and should not end with blank characters (spaces,
tabs, . . .). Files should not have more than 1000 lines. The line terminations should be
the same (DOS/Windows CRLF or UNIX CR style) for all the files of the program.

Functions should be grouped by abstraction level in different source code files:

• the main() function, command-line processing and input/output calls in one file,

• the implementation of the algorithm described and reviewed in the article in one or
more other files,

• and the implementation of auxiliary and external routines in one or more other files.

Annex D provides some examples of programs that can be used to improve the indentation,
spacing and presentation of a source code.

4.3. Implementation and Comments

The source code of a published software must be commented precisely and exhaustively.
Authors should target the “1/8 comment/instruction ratio”, but the quality of the com-
ments is more important than the quantity. The source code must be written in English,
including all variables, functions names and comments.

Authors must ensure that the code is understandable, to the satisfaction of the editor
and reviewers, so that consistency between the description of the algorithm and its imple-
mentation can be verified. The relation between each part of the implementation and the
respective part of the description of the algorithm must be explained in the comments.

Authors should apply simpler implementations when available, follow the conventions of
the programming language, and use comments to explain implementation choices and every
complicated or subtle point in the program. Clarity is more important than virtuosity.

Every function must be documented with at least one line explaining what the function
is doing, and the meaning of its parameters and return value.

The Doxygen50 source code documentation format is recommended for every published
software.

Annex D provides some examples of programs that can be used to count the comment,
instruction and blank lines.

50http://www.stack.nl/~dimitri/doxygen/

16

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

4.4. Example Data

The authors should provide an example of input file to test the published software and
the result to expect when this input file is processed by the program.

Annexes

A. Key Words

The key words must, must not, required, shall, shall not, should, should not,
recommended, may, and optional in this document are to be interpreted as described
in IETF RFC211951.

must This word, or the terms required or shall, means that the definition is an absolute
requirement.

must not This phrase, or the phrase shall not, means that the definition is an absolute
prohibition.

No article will be published if a program included in this article doesn’t follow such re-
quirements or prohibitions.

should This word, or the adjective recommended, means that there may exist valid rea-
sons in particular circumstances to ignore a particular item, but the full implications
must be understood and carefully weighed before choosing a different course.

should not This phrase, or the phrase not recommended, means that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable
or even useful, but the full implications should be understood and the case carefully
weighed before implementing any behavior described with this label.

The rationale for not following such recommendations must be agreed by the authors,
reviewers and editor before an article is accepted for publication.

may This word, or the adjective optional, means that an item is truly optional. One
author may choose to include the item because a particular article requires it or
because the author feels that it enhances the software while another author may
omit the same item.

51http://tools.ietf.org/html/rfc2119

17

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119

B. Compression and Archive Tools

Authors can consider that the files produced by the following tools are correct zip and
tar/gzip archives:

• on Linux systems, the tar (usually “GNU tar”), zip (usually “Info-Zip zip”) and
gzip programs;

• on Mac OS X systems, the “Create Archive” feature of the graphical interface and
the tar (usually “BSD tar”) and gzip programs;

• on Windows systems, the “Compressed Folder” feature of the graphical interface and
the 7-zip52 program.

C. Coding Help

The authors of the article do not need to be the authors of all the implementation of their
algorithm. The original copyrights and licenses of the reused code parts must of course be
respected. This external code will not be reviewed, and it can not be updated once the
article is published.

Some help to read and write image files is available53 with simplified interfaces to libpng

and libtiff and some examples. Authors can also find a list of contributions and tools54

from other authors willing to share.

The editorial board can provide some help to the authors to accelerate their code and guide
them for performance profiling and parallel programming. The discussion list55 is the good
place for any questions related to the journal, including the implementation work.

D. Source Code Tools

Authors can use the expand56 program (Linux, Mac OS X) to convert tabs to spaces.
They can improve the presentation and clarity of their software with indent57 (C, Linux),
uncrustify58 (C/C++, Linux and Windows), astyle59 (C/C++, Linux, Mac OS X and
Windows) and UniversalIndentGUI60 (cross-platform graphical front end).

52http://www.7-zip.org/
53http://tools.ipol.im/wiki/author/code/tools/
54http://tools.ipol.im/wiki/author/code/hatchery/
55http://tools.ipol.im/mailman/listinfo/discuss
56http://www.gnu.org/software/coreutils/manual/html_node/expand-invocation.html
57http://www.gnu.org/software/indent/
58http://uncrustify.sourceforge.net/
59http://astyle.sourceforge.net/
60http://universalindent.sourceforge.net/

18

http://www.7-zip.org/
http://tools.ipol.im/wiki/author/code/tools/
http://tools.ipol.im/wiki/author/code/hatchery/
http://tools.ipol.im/mailman/listinfo/discuss
http://www.gnu.org/software/coreutils/manual/html_node/expand-invocation.html
http://www.gnu.org/software/indent/
http://uncrustify.sourceforge.net/
http://astyle.sourceforge.net/
http://universalindent.sourceforge.net/
http://www.7-zip.org/
http://tools.ipol.im/wiki/author/code/tools/
http://tools.ipol.im/wiki/author/code/hatchery/
http://tools.ipol.im/mailman/listinfo/discuss
http://www.gnu.org/software/coreutils/manual/html_node/expand-invocation.html
http://www.gnu.org/software/indent/
http://uncrustify.sourceforge.net/
http://astyle.sourceforge.net/
http://universalindent.sourceforge.net/

Tools like cloc61, ohcount62 and sloccount63 can be used to count the comments, instruc-
tions and blank lines and evaluate the comment/instruction ratio.

61http://cloc.sourceforge.net/
62http://ohcount.sourceforge.net/
63http://sloccount.sourceforge.net/

19

http://cloc.sourceforge.net/
http://ohcount.sourceforge.net/
http://sloccount.sourceforge.net/
http://cloc.sourceforge.net/
http://ohcount.sourceforge.net/
http://sloccount.sourceforge.net/

	In Brief: Check List, Check Service and Examples
	About this Document
	Status
	Revisions
	Vocabulary
	License

	Guidelines
	1. Packaging and Content
	1.1. Compressed Archive
	1.2. Archive Name, Program Name and Version
	1.3. File and Folder Names
	1.4. Hidden and Useless Files

	2. Implementation
	2.1. Source Code
	2.2. Programming Language
	2.3. Portability
	2.4. Compilation [only C and C++]
	2.5. Interpretation [only M-code]
	2.6. External Libraries and Toolboxes
	2.7. Support Code
	2.8. Usage and Input/Output
	2.9. Computing Resources

	3. Copyright, License and Patents
	3.1. Copyright Attribution
	3.2. Patent Warning
	3.3. License

	4. Documentation
	4.1. README.txt
	4.2. Readability
	4.3. Implementation and Comments
	4.4. Example Data

	Annexes
	A. Key Words
	B. Compression and Archive Tools
	C. Coding Help
	D. Source Code Tools

